Aik Thi Raniya | 2017 Movies | Fear The Walking Dead Flight 462 Part 8 720p-GHoSTCR3W

Florero Figura 2. Tres tipos de presentaciones


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Florero Figura 2. Tres tipos de presentaciones"

Transcripción

1 Plan de clase (1/3) Escuela: Fecha: Profesor (a). Curso: Matemáticas 7 Eje temático: MI Contenido: Resolución de problemas de conteo mediante diversos procedimientos. Búsqueda de recursos para verificar los resultados. Intenciones didácticas: Que los alumnos utilicen diversos procedimientos para resolver problemas que impliquen obtener la cantidad de combinaciones que se pueden hacer con los elementos de un conjunto dado. Consigna: Organizados en equipos resuelvan los siguientes problemas. 1. Samuel vende arreglos florales y para esta semana ha conseguido cuatro clases de flores (Figura 1). Por cada clase de flor ofrece tres presentaciones distintas (Figura 2): Figura 1. Cuatro clases de flores Caja Florero Figura 2. Tres tipos de presentaciones Pedestal - Dibuja una tabla o un diagrama para contar todos los arreglos diferentes que ofrece Samuel - Qué operación con los datos se puede realizar para obtener el número de arreglos diferentes? - En este caso, Es lo mismo flor roja y arreglo florero que arreglo florero y flor roja?

2 2. En una nevería se venden los siguientes sabores: fresa, vainilla, limón, nuez y chocolate. Juan quiere comprar un helado de dos bolas de sabores diferentes de las que se sirven en un vaso. - Haz una tabla o un diagrama en el que representes todas las diferentes posibilidades en las que se puede pedir el helado. Cuántas formas diferentes hay? - Qué operación u operaciones con los datos llevan al resultado? - En este caso, es diferente un helado de fresa y limón que un helado de limón y fresa? Por qué? - Si además se considera la posibilidad de que ambas bolas sean de un mismo sabor; aprovecha lo que hiciste en el punto anterior para determinar todas las formas diferentes en que se puede pedir el helado. - Qué operación u operaciones con los datos llevan a este resultado? Consideraciones previas: En el primer problema, los estudiantes pueden hacer un listado sistemático, un arreglo rectangular o un diagrama de árbol; estas dos últimas representaciones son las más apropiados para inferir que la operación que lleva al resultado es el producto de las cardinalidades de los conjuntos (regla del producto combinatorio). Algunos estudiantes pueden tener la tendencia a realizar listados dibujando las flores o los helados, estas son representaciones icónicas que se deben desincentivar poco a poco a favor del uso de símbolos; así mismo el uso de los nombres completos (margarita, Florero) para hacer los listados conviene reducirlos, por ejemplo (m, F) o algo equivalente. En el segundo problema también se esperan listados, arreglos rectangulares o diagramas de árbol, pero hay varias diferencias respecto al anterior: 1) No hay dos conjuntos diferentes, si no las dos elecciones (sabor de la bola) se realizan sobre el mismo conjunto. 2) Si se aplica la regla del producto debe notarse que se cuenta 2 veces un mismo tipo de helado (Fresa-limón es igual a Limón-fresa). La intención es que los estudiantes entiendan el esquema de la regla del producto combinatorio pero que lo apliquen de manera flexible y no mecánicamente: Si en un conjunto se puede elegir un objeto de N maneras y de otro conjunto se puede elegir un objeto de M maneras, entonces una pareja formada por un objeto de cada conjunto se puede elegir de N M maneras. Con el fin de que los estudiantes adquieran esta regla, los recursos de los arreglos rectangulares y el diagrama de árbol sirven como un medio para ese fin, pues permiten inferir la regla, justificarla y controlar su aplicación. La potencia de la regla del producto combinatorio se pone de manifiesto cuando la cardinalidad de alguno o ambos conjuntos en juego es muy grande. Una dificultad que suelen tener los estudiantes es saber cuándo se cuenta o no el orden; por ejemplo, en el primer problema la pareja (clase de la flor, presentación del arreglo) es la misma que (presentación del arreglo, clase de la flor), pero al aplicar la regla del producto (4x3 = 12) no se están contando ambas, sino sólo una Por qué? En cambio, en el problema 2, aunque también la pareja (sabor fresa, sabor vainilla) es la misma que (sabor vainilla, sabor fresa), al aplicar la regla del producto para el caso en que no se permite el mismo sabor (5 x 4 = 20) se están contando las parejas y sus recíprocas y, por lo tanto, es necesario dividir entre 2, obteniéndose 10 diferentes tipos de helado de dos bolas. Los estudiantes deben reflexionar y encontrar las razones por lo que esto es así; no se trata de que obtengan una regla general sobre cuándo se cuentan o no las parejas recíprocas, sino en cada caso particular analizar este punto.

3 Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

4 Plan de clase (2/3) Escuela: Fecha: Profesor (a). Curso: Matemáticas 7 Eje temático: MI Contenido: Resolución de problemas de conteo mediante diversos procedimientos. Búsqueda de recursos para verificar los resultados. Intenciones didácticas: Que los alumnos utilicen diversos procedimientos para resolver problemas que impliquen obtener la cantidad de variaciones que se pueden hacer con los elementos de un conjunto dado. Consigna: Organizados en equipos lean los enunciados y hagan lo que se pide. 1. Se tienen cuatro lienzos de tela, cada uno de uno de los siguientes colores: rojo, azul, verde y blanco, con los que se van a elaborar banderas. Cada bandera debe tener un color en cada franja, el cual puede no repetirse o se puede repetir una o dos veces. - Realiza un diagrama para representar todas las banderas que se pueden hacer Cuántas banderas se puede hacer? - La bandera (rojo, azul, rojo) es diferente de la bandera (azul, rojo, rojo)? - Qué operación u operaciones con los datos llevan al resultado? - Si se requieren banderas en las que no se puede repetir el color de cada franja Cómo se puede determinar el número de estas banderas? Encuentra dicho número: - Qué operación u operaciones con los datos llevan al resultado? 2. En un ayuntamiento las placas que deben portar los vehículos de dos ruedas para poder circular están formadas por números de 3 cifras: Los funcionarios del ayuntamiento, para distinguir entre placas de bicicleta de las de motocicleta, deciden que las primeras sólo utilicen los dígitos 0, 1, 2, 3 y 4. - Realiza un diagrama para representar todos las placas diferentes para bicicleta que se pueden formar con esos dígitos Cuántas placas diferentes se pueden hacer? - Qué operación u operaciones llevan al resultado? - Son diferentes las placas 325 de la placa 352? y la 324 de la 423?

5 - Si se decide además no emitir placas que comiencen con el número cero Cuántas placas se pueden formar? Cuántas se deben restar al conteo anterior? - Si sí se permiten las placas que comiencen con cero, pero no las que tengan dígitos repetidos Cuántas placas se pueden formar? - Qué operación u operaciones llevan a este resultado? Consideraciones previas: A diferencia de los problemas del plan anterior, en éstos sí importa el orden de los elementos de los arreglos; además se implican tres en lugar de sólo dos elecciones. En el problema 1, igual que en los problemas anteriores, algunos estudiantes intentarán hacer una lista sistemática dibujando las banderas completas e iluminándolas; se les debe sugerir que utilicen símbolos y eviten las representaciones icónicas. También conviene propiciar el uso de diagramas de árbol o, en el caso de los más avanzados, la regla del producto; sólo conviene utilizar las listas en las primeras exploraciones; esto ayuda a decidir cómo representar los objetos y a entender el problema. Con estos problemas se espera que los estudiantes noten 1) que los arreglos con los mismos objetos son diferentes si el orden es distinto; 2) que se aplica la regla del producto dos veces sucesivas; 3) en el caso en que no se permiten repeticiones se utiliza la cardinalidad del conjunto original pero cada vez restando una unidad: n(n-1)(n-2). Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

6 Plan de clase (3/3) Escuela: Fecha: Profesor (a). Curso: Matemáticas 7 Eje temático: MI Contenido: Resolución de problemas de conteo mediante diversos procedimientos. Búsqueda de recursos para verificar los resultados. Intenciones didácticas: Que los alumnos utilicen diversos procedimientos para resolver problemas que impliquen obtener la cantidad de permutaciones que se pueden hacer con los elementos de un conjunto dado. Consigna: Organizados en equipos lean los enunciados y respondan lo que se pide. 1. En un edificio nuevo hay 5 departamentos, cada departamento cuenta con un lugar de estacionamiento. Se han habitado sólo dos departamentos, el de Carmen y el de Daniel, quienes pueden colocar cada noche sus coches en el lugar que prefieran, si no está ocupado. - Realiza un diagrama para representar todas las formas en que se pueden estacionar los dos coches Cuántas formas diferentes hay de estacionarlos? - Qué operación u operaciones con los datos llevan al resultado? 2. Suponga que se forman arreglos de tamaño cinco utilizando sólo dos letras A y tres letras B; por ejemplo: AAABB, AABAB, etc. - Realiza una tabla o diagrama para representar todos los arreglos que se pueden formar Cuántos hay? - Qué operación u operaciones con los datos llevan al resultado? - Qué similitud y qué diferencia tiene este problema con el problema 1 de los coches y estacionamientos? Consideraciones previas: El problema los coches es de colocación; el razonamiento sigue este esquema: De cuántas maneras se puede escoger un estacionamiento para el coche de Carmen? Respuesta: de 5 maneras. Una vez elegido el lugar para el coche de Carmen De cuántas maneras se puede elegir un lugar para el coche de Daniel? Respuesta: de 4 maneras. Luego hay 5x4=20 formas en que pueden colocar sus coches. En los problemas de colocación la aplicación de la regla del producto requiere que el estudiante determine primero cuál es el conjunto en el que debe elegir; se elige el estacionamiento para cada coche y no el coche para cada estacionamiento. El problema 2 es muy importante pues permitirá entender la expansión del binomio de Newton. El razonamiento es similar al de los coches y estacionamientos, donde ahora las A s juegan el papel de los coches, aunque en este caso son indistinguibles; de donde a 20 hay que dividirlo entre 2 para obtener 10 Por qué? Conviene que en estos problemas se deje a los estudiantes que utilicen sus recursos de representación (listas, arreglos rectangulares, diagramas de árbol) con libertad y que lleguen a la solución sin apresurarlos a la aplicación de la regla del producto. Una vez que hayan encontrado la solución con sus propios recursos se les preguntará cómo

7 encontrar la solución haciendo operaciones y se les puede sugerir el razonamiento anterior como ejemplo para resolver otros problemas de colocación. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

La ruleta Plan de clase (1/3) Escuela: Fecha: Profr. (a):

La ruleta Plan de clase (1/3) Escuela: Fecha: Profr. (a): La ruleta Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 3 Secundaria Eje temático: MI Contenido: 9.2.6 Cálculo de la probabilidad de ocurrencia de dos eventos mutuamente excluyentes

Más detalles

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo.

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo. COMBINATORIA Introducción a la Combinatoria Recuento A menudo se presenta la necesidad de calcular el número de maneras distintas en que un suceso se presenta o puede ser realizado. Otras veces es importante

Más detalles

Propuesta didáctica: Trucos para sumar

Propuesta didáctica: Trucos para sumar Propuesta didáctica: Trucos para sumar Clase: Inicial 5 años 1er. año Contenidos programáticos y contenidos involucrados: Composición y descomposición aditiva de números entre 0 y 100. Valor posicional

Más detalles

Problemas resueltos de combinatoria

Problemas resueltos de combinatoria Problemas resueltos de combinatoria 1) De cuántas formas distintas pueden sentarse seis personas en una fila de butacas? 2) De cuántas formas pueden mezclarse los siete colores del arco iris tomándolos

Más detalles

Resolución de problemas de multiplicación

Resolución de problemas de multiplicación sección secciónc Resolución de problemas de multiplicación En esta sección se introduce la combinación para identificar todos los posibles resultados de un problema multiplicativo y se continúa con las

Más detalles

Experiencias de aprendizaje Núcleo de Aprendizajes Relaciones Lógico-Matemáticas y Cuantificación

Experiencias de aprendizaje Núcleo de Aprendizajes Relaciones Lógico-Matemáticas y Cuantificación Orientaciones para la Implementación de los Programas Pedagógicos de los Niveles de Transición 75 Experiencias de aprendizaje Núcleo de Aprendizajes Relaciones Lógico-Matemáticas y Cuantificación 76 Ministerio

Más detalles

Elementos de Combinatoria

Elementos de Combinatoria Elementos de Combinatoria 1 Introducción Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte

Más detalles

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano.

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Consigna: En equipos, resuelvan la siguiente actividad. A partir de la siguiente

Más detalles

5 o. Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas. MATEMÁTICA Guía didáctica

5 o. Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas. MATEMÁTICA Guía didáctica Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Guía didáctica 5 o Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Guía didáctica NIVEL

Más detalles

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1] Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno

Más detalles

UNA COMIDA GRATIS. - Jóvenes amigos, dejen de discutir. Siéntense a la mesa en cualquier orden y escúchenme. Análisis Combinatorio

UNA COMIDA GRATIS. - Jóvenes amigos, dejen de discutir. Siéntense a la mesa en cualquier orden y escúchenme. Análisis Combinatorio UNA COMIDA GRATIS - Que uno cualquiera anote el orden en que están sentados ahora. Mañana vienen a comer y se sientan en otro orden. Pasado mañana vienen de nuevo a comer y se sientan en orden distinto,

Más detalles

Actividades para empezar bien el día

Actividades para empezar bien el día Actividades para empezar bien el día Preescolar Propuesta del Departamento de Educación Preescolar Servicios Educativos del Estado de Chihuahua Vamos a escondernos Competencia: Utiliza los números en situaciones

Más detalles

Plan de clase (1/3) Intenciones didácticas: Que los alumnos estimen y relacionen el volumen de conos y cilindros.

Plan de clase (1/3) Intenciones didácticas: Que los alumnos estimen y relacionen el volumen de conos y cilindros. Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 9 Eje temático: FE y M Contenido: 9.5.4 Estimación y cálculo del volumen de cilindros y conos o de cualquiera de las variables implicadas

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

El desarrollo del pensamiento multiplicativo.

El desarrollo del pensamiento multiplicativo. El desarrollo del pensamiento multiplicativo. Análisis de las diferentes situaciones multiplicativas, su aplicación en el aula y en el desarrollo del pensamiento matemático. Autor: Mery Aurora Poveda,

Más detalles

Concepto de fracción. Fracciones equivalentes

Concepto de fracción. Fracciones equivalentes FRACCIONES: DOCUMENTO INTRODUCTORIA. Concepto de fracción Raúl ha conseguido el cinturón azul de judo. Para celebrarlo, ha invitado a sus amigos a una pequeña fiesta en casa. Su padre les ha preparado

Más detalles

Sean capaces de resolver problemas de conteo utilizando más de un procedimiento, reconociendo cuál o cuáles son más eficaces.

Sean capaces de resolver problemas de conteo utilizando más de un procedimiento, reconociendo cuál o cuáles son más eficaces. Conteo 10 1 Diagrama de Árbol Sean capaces de resolver problemas de conteo utilizando más de un procedimiento, reconociendo cuál o cuáles son más eficaces. En este tema lo principal es saber usar el diagrama

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

COMBINATORIA. 1. Fundamentos de combinatoria En esta sección estudiaremos las técnicas básicas de recuento que son fundamentales en combinatoria.

COMBINATORIA. 1. Fundamentos de combinatoria En esta sección estudiaremos las técnicas básicas de recuento que son fundamentales en combinatoria. COMBINATORIA La combinatoria es una parte importante de matemática discreta que se utiliza en la resolución de problemas de enumeración y de recuento. 1. Fundamentos de combinatoria En esta sección estudiaremos

Más detalles

Problemas a la carta

Problemas a la carta Problemas a la carta Enseñanza Alfinio Flores Peñafiel y Nora G. Ramírez Arizona State University Maricopa Community Colleges resumen Se presentan cinco problemas que pueden ser resueltos mediante la utilización

Más detalles

Problemas de Conteo. 1. Problemas

Problemas de Conteo. 1. Problemas Problemas de Conteo 1. Problemas 1. En un torneo de básquetbol compiten 16 equipos. En cada ronda los equipos se dividen en grupos de 4. En cada grupo cada equipo juega una vez contra cada uno de los equipos

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

Universidad de la Frontera

Universidad de la Frontera Universidad de la Frontera Facultad de Ingeniería, Ciencias y Admistración Departamento de Matemática Actividad Didáctica: El Abaco TALLER # 2 - Sistema Decimal El ábaco es uno de los recursos más antiguos

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 16 1 Pág. 1 Página 220 Ruperto sale de su casa, R, compra el periódico en el quiosco, K, y va a buscar a su amiga Pilar, P. Cuántos caminos distintos puede tomar para ir de su casa al quiosco? Cuántos

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

Actividades para empezar bien el día. Preescolar. Matemáticas

Actividades para empezar bien el día. Preescolar. Matemáticas Actividades para empezar bien el día Preescolar Matemáticas Armamos rompecabezas Los alumnos arman rompecabezas clásicos, modelos con el tangram y con cuadros bicolores. Disponer de material suficiente

Más detalles

PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS

PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS La finalidad de una prueba de k muestras es evaluar la aseveración que establece que todas las k muestras independientes provienen de poblaciones

Más detalles

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R MATEMÁTICAS PARA EDUCACIÓN INFANTIL N Enseñamos y aprendemos llos números:: Método Siingapur y Fernández Bravo,, Porr Clarra Garrcí ía,, Marrtta Gonzzál lezz y Crri isstti ina Lattorrrre.. Ú M E R O S

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN Ejercicio 1. Diseñar una planilla EXCEL que tome como dato de entrada un número entero y devuelva la representación en base 2. Testearla con los números 23, 245, 673,

Más detalles

Cocinemos galletas Mi receta saludable

Cocinemos galletas Mi receta saludable Cocinemos galletas Mi receta saludable La fábrica de galletas Ingredientes Preparación 1 2 3 4 Mi nombre es: Receta aportada por: Hoy es: 121 La fábrica de galletas Mi nombre es: Lo que más me gustó de

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 3 Análisis Combinatorio Cursada 2014

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 3 Análisis Combinatorio Cursada 2014 S 1 c 1 S 2 C 1 ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 3 Análisis Combinatorio Cursada 2014 Desarrollo Temático de la Unidad Conceptos preliminares. Principio fundamental del análisis combinatorio.

Más detalles

Es una persona que ayudará a que los derechos de las personas con discapacidad se hagan realidad

Es una persona que ayudará a que los derechos de las personas con discapacidad se hagan realidad Naciones Unidas Asamblea General - Concejo de Derechos Humanos Acerca de la Relatora Especial sobre los derechos de las personas con discapacidad Es una persona que ayudará a que los derechos de las personas

Más detalles

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. (1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,

Más detalles

Ross desea ordenar una pizza, de cuántas opciones diferentes puede seleccionar Ross la pizza con sus complementos?

Ross desea ordenar una pizza, de cuántas opciones diferentes puede seleccionar Ross la pizza con sus complementos? M510: La pizza A) PRESENTACIÓN DEL PROBLEMA En una pizzeria ofrecen la pizza base con queso y tomate y le puedes agregar dos de cuatro opciones como complemento: aceitunas, jamón, champiñones o salami.

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

CPE (SEGUNDO CURSO) PRÁCTICA 0 SOLUCIONES (Curso 2015 2016)

CPE (SEGUNDO CURSO) PRÁCTICA 0 SOLUCIONES (Curso 2015 2016) 1/11 CPE (SEGUNDO CURSO) PRÁCTICA 0 SOLUCIONES (Curso 2015 2016) 1. Considérese una función de n variables f(x 1, x 2,..., x n ). Cuántas derivadas parciales de orden r se pueden calcular? Teniendo en

Más detalles

CAPÍTULO I: MÉTODOS DE CONTEO S01 CONCEPTOS BÁSICOS.

CAPÍTULO I: MÉTODOS DE CONTEO S01 CONCEPTOS BÁSICOS. CAPÍTULO I: MÉTODOS DE CONTEO S01 CONCEPTOS BÁSICOS. 1 Principios de Multiplicación Contenido: S01 Conceptos básicos. S02 Variaciones. S03 Permutaciones. S04 Combinaciones. S05 Coeficientes Binomiales.

Más detalles

MINISTERIO DE EDUCACIÓN PÚBLICA VICEMINISTERIO ACADÉMICO DIRECCIÓN DE DESARROLLO CURRICULAR 3, 13, 23, 33,,,

MINISTERIO DE EDUCACIÓN PÚBLICA VICEMINISTERIO ACADÉMICO DIRECCIÓN DE DESARROLLO CURRICULAR 3, 13, 23, 33,,, MATERIALES NECESARIOS: Una tabla de cien. Fichas o marcadores. ACTIVIDADES PROPUESTAS: 1. Usando la tabla de 100 completen la siguiente sucesión: 3, 13, 23, 33,,, a. Qué patrón sigue la sucesión? Descríbanlo

Más detalles

CHOQUE.(CANTIDAD DE MOVIMIENTO )

CHOQUE.(CANTIDAD DE MOVIMIENTO ) APUNTES Materia: Tema: Curso: Física y Química Momento Lineal 4º ESO CHOQUE.(CANTIDAD DE MOVIMIENTO ) CANTIDAD DE MOVIMIENTO Si un cuerpo de masa m se está moviendo con velocidad v, la cantidad de movimiento

Más detalles

Web: www.iesmarmenor.org Curso 2012-2013 MATEMÁTICAS-I 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN. La recta en el plano. (1 semana)

Web: www.iesmarmenor.org Curso 2012-2013 MATEMÁTICAS-I 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN. La recta en el plano. (1 semana) MATEMÁTICAS-I DISTRIBUCIÓN TEMPORAL DE LOS CONTENIDOS 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN Aritmética y Álgebra Trigonometría (4 semanas) Números complejos Vectores en el plano La recta en el plano

Más detalles

CUADERNOS DE ESTUDIO II

CUADERNOS DE ESTUDIO II Administración Nacional de Educación Pública Consejo Directivo Central CUADERNOS DE ESTUDIO II Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP CUADERNOS DE ESTUDIO II Propuesta para

Más detalles

UNIDAD 2. LOS NÚMEROS RACIONALES.

UNIDAD 2. LOS NÚMEROS RACIONALES. IES Prof. Juan Bautista Matemáticas º (Ver. ) Unidad : Los números racionles UNIDAD. LOS NÚMEROS RACIONALES. Unidad : Los números racionales Al final deberás haber aprendido... Usar y operar con fracciones

Más detalles

ANALISIS COMBINATORIO.

ANALISIS COMBINATORIO. ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si un suceso puede tener lugar de m maneras distintas y cuando ocurre una de ellas se puede realizar otro suceso inmediatamente de n formas diferentes, ambos

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

Problemas de Algebra Matricial

Problemas de Algebra Matricial Matrices Problemas de lgebra Matricial Matrices. Eplicitar las siguientes matrices. a) m=, n= a i i, b) m=, n= a si i=, a si i, i, c) m=, n= a, i, d) m=, n= a i i, i. Crear matrices de tal forma que cumplan

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

Contamos objetos y resolvemos problemas

Contamos objetos y resolvemos problemas primer GRADO - Unidad 2 - Sesión 05 Contamos objetos y resolvemos problemas En esta sesión, los niños y las niñas continuarán aprendiendo a contar y a representar colecciones de hasta cinco objetos, y

Más detalles

Recursos para el Estudio en Carreras de Ingeniería 2006 UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES

Recursos para el Estudio en Carreras de Ingeniería 2006 UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES En esta unidad te invitamos a que: Adviertas la importancia de los apuntes como un recurso para iniciar el estudio de un tema. Te apropies de algunas estrategias

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

Práctico 4. Probabilidad

Práctico 4. Probabilidad Práctico 4. Probabilidad Problema Calcular la probabilidad que si se lanzan dos dados la suma de los resultados obtenidos sea inferior a 9. Problema 2 Las posibilidades de apostar a pleno en la ruleta

Más detalles

Representamos la unidad de millar en el Banco del aula

Representamos la unidad de millar en el Banco del aula CUARTO GRADO - UNIDAD 1 - SESIÓN 07 Representamos la unidad de millar en el Banco del aula En esta sesión, se espera que los niños y las niñas construyan la noción de unidad de millar, representándola

Más detalles

COMBINATORIA VARIACIONES. Las variaciones son aquellas formas de agrupar los elementos de un conjunto teniendo en cuenta que:

COMBINATORIA VARIACIONES. Las variaciones son aquellas formas de agrupar los elementos de un conjunto teniendo en cuenta que: COMBINATORIA La Combinatoria es la parte de las Matemáticas que estudia las diversas formas de realizar agrupaciones con los elementos de un conjunto, formándolas y calculando su número. Existen distintas

Más detalles

PASOS PARA DESARROLLAR UN BUEN PROYECTO

PASOS PARA DESARROLLAR UN BUEN PROYECTO PASOS PARA DESARROLLAR UN BUEN PROYECTO El desarrollo de un proyecto requiere de tiempo, creatividad, organización, participación de los integrantes del equipo y mucho entusiasmo! Los pasos que deben desarrollar

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

G.C.B.A. Matemática. Fracciones y números decimales. 4º grado. Páginas para el alumno

G.C.B.A. Matemática. Fracciones y números decimales. 4º grado. Páginas para el alumno Matemática Fracciones y números decimales. º grado Páginas para el alumno Gobierno de la Ciudad de Buenos Aires. Ministerio de Educación. Dirección General de Planeamiento. Dirección de Currícula Diversas

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S.

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S. Técnicas De Conteo Si en el experimento de lanzar la moneda no cargada, se lanzan 5 monedas y definimos el evento A: se obtienen 3 caras, cómo calcular la probabilidad del evento A?, si todos los resultados

Más detalles

Semana 2: Diseñar Semana 3: Implementar Semana 4: Reflexionar, medir, evaluar, compartir.

Semana 2: Diseñar Semana 3: Implementar Semana 4: Reflexionar, medir, evaluar, compartir. En este desafío, estudiantes de todo el mundo explorarán los beneficios de la utilización de fuentes de energía renovables en sus comunidades. Enfocados en la energía solar, los estudiantes diseñaran y

Más detalles

Escritura de ecuaciones de problemas de algebraicos

Escritura de ecuaciones de problemas de algebraicos 1 Escritura de ecuaciones de problemas de algebraicos Herbert Mendía A. 2011-10-12 www.cimacien.org.gt Conocimientos previos necesarios Operaciones básicas: suma, resta, multiplicación y división. Jerarquía

Más detalles

Eventos simples (páginas 370 373)

Eventos simples (páginas 370 373) A NOMRE FECHA PERÍODO Eventos simples (páginas 370 373) Un evento simple es un resultado específico. Los resultados ocurren al azar si cada resultado ocurre por casualidad. Cómo calcular la probabilidad

Más detalles

Gestión en Compraventas

Gestión en Compraventas Guía del Alumno Gestión en Compraventas Matemática FORTALECIMIENTO DE LA FORMACIÓN GENERAL COMO BASE DE SUSTENTACIÓN DEL ENFOQUE DE COMPETENCIAS LABORALES DE LA FORMACIÓN DIFERENCIADA DE LA EMTP Manual

Más detalles

Pág. 1. Formar agrupaciones

Pág. 1. Formar agrupaciones Pág. 1 Formar agrupaciones 1 a) En una urna hay una bola blanca, una roja y una negra. Las extraemos de una en una y anotamos ordenadamente los resultados. Escribe todos los posibles resultados que podemos

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Curso Taller de Matemáticas Olímpicas. Principio Fundamental del Conteo

Curso Taller de Matemáticas Olímpicas. Principio Fundamental del Conteo Curso Taller de Matemáticas Olímpicas Principio Fundamental del Conteo La forma más sencilla y tradicional de contar cosas suele ser con los diagramas de árbol; al final, todo se reduce a sumas y multiplicaciones.

Más detalles

Exportar a archivos DXF 7 - AutoCAD Guardar imagen 8

Exportar a archivos DXF 7 - AutoCAD Guardar imagen 8 Haz tu habitación en 2D desde una 1 plantilla Definir Sección Especial 6 Insertar un archivo Autocad o una imagen 2 escaneada Exportar a archivos DXF 7 - AutoCAD Guardar imagen 8 Imagen Agrupar Objetos

Más detalles

TRANSICIÓN JUGAR CON BLOQUES LÓGICOS

TRANSICIÓN JUGAR CON BLOQUES LÓGICOS SECUENCIAS DIDÁCTICAS DESARROLLO DEL PENSAMIENTO LÓGICO MATEMÁTICO TRANSICIÓN JUGAR CON BLOQUES LÓGICOS Los bloques lógicos son un material estructurado creado por el matemático y psicólogo húngaro, Zoltan

Más detalles

MATEMÁTICAS 4º DE ESO ACTIVIDADES DE VERANO

MATEMÁTICAS 4º DE ESO ACTIVIDADES DE VERANO 1 MATEMÁTICAS 4º DE ESO ACTIVIDADES DE VERANO I.- OPERACIONES CON POTENCIAS Y RADICALES 1.- - S: 77/5 2.- S: 1 3.- 4.- 5.- 6.- 7.- 8.- 9.- 10.- 2 11.- Simplifica 12.- Simplifica 13.- Expresa bajo un radical

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

Ejemplo de tipo variable

Ejemplo de tipo variable CALCULADOR CONTABLE Ejemplo de tipo variable Supongamos un préstamo con las siguientes características: Valor nominal: 100.000 Fecha de contratación: 20/10/2009 Carencia de capital durante tres años Siete

Más detalles

Regletas Cuisenaire. Alumno: Fecha. Regletas Cuisenaire (Números de color)

Regletas Cuisenaire. Alumno: Fecha. Regletas Cuisenaire (Números de color) Regletas Cuisenaire (Números de color) Las regletas de Cuisenaire, también conocidas como números de color, es un material didáctico que se emplea fundamentalmente en la E. Infantil y primer ciclo de E.

Más detalles

Múltiplos y divisores

Múltiplos y divisores 2 Múltiplos y divisores Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números

Más detalles

OBJETIVO GENERAL OBJETIVOS ESPECIFICOS

OBJETIVO GENERAL OBJETIVOS ESPECIFICOS 1 INTRODUCCIÓN Los maestros cada día deben perfeccionar y/o modificar su desarrollo profesional frente a grupo; con el planteamiento de esta propuesta, he retomado el recorrido que tengo en mis 10 años

Más detalles

Narrativa para el estudiante:

Narrativa para el estudiante: 2 2.OA 1 Usan la suma y la resta hasta el número 100 para resolver problemas verbales de uno y dos pasos relacionados a situaciones en las cuales tienen que sumar, restar, unir, separar, y comparar, con

Más detalles

El secreto del libro de dibujos / El termómetro: caliente o frío

El secreto del libro de dibujos / El termómetro: caliente o frío El secreto del libro de dibujos / El termómetro: caliente o frío Núcleo: RELACIONES LÓGICO MATEMÁTICAS Y CUANTIFICACIÓN Nivel: SEGUNDO CICLO Duración: 2 MINUTOS DESCRIPCIÓN: Serie coreana de animación

Más detalles

5 o. Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas. MATEMÁTICA Cuaderno de trabajo

5 o. Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas. MATEMÁTICA Cuaderno de trabajo Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Cuaderno de trabajo 5 o Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Cuaderno de

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10. _ 9-.qxd //7 9:7 Página 9 Divisibilidad INTRODUCCIÓN El concepto de divisibilidad requiere dominar la multiplicación, división y potenciación de números naturales. Es fundamental dedicar el tiempo necesario

Más detalles

13. II) Que salga una pinta del trébol es más probable que salga una pinta de diamante. III) La probabilidad de que salga un AS de trébol es 1/13.

13. II) Que salga una pinta del trébol es más probable que salga una pinta de diamante. III) La probabilidad de que salga un AS de trébol es 1/13. GUIA UNO P.S.U. PROBABILIDADES ) Al lanzar un dado común (seis caras), cuál es la probabilidad de obtener un número que no sea primo? A) 2 5) Al lanzar dos dados no cargados, cuál es la probabilidad de

Más detalles

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular:

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular: PARTE 1 FACTORIAL 2. 31 Calcular: PROBLEMAS PROPUESTOS i. 9!, (9)(8)(7)(6)(5)(4)(3)(2)(1) = 362880 ii. 10! (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 3628800 iii. 11! (11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 39916800

Más detalles

FASES DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS

FASES DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS FASES DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS Varios autores han tratado de identificar y describir las distintas fases en el proceso de resolución de problemas. Polya (1945), en su modelo descriptivo,

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Expresarse con claridad en forma oral y escrita PERO SI TE DIJE QUE ERA REDONDO! Lámina con dibujos geométricos. Pauta para el observador.

Expresarse con claridad en forma oral y escrita PERO SI TE DIJE QUE ERA REDONDO! Lámina con dibujos geométricos. Pauta para el observador. Competencia: Expresarse con claridad en forma oral y escrita ACTIVIDAD 1 PERO SI TE DIJE QUE ERA REDONDO! Fundación Chile - Programa Competencias Laborales Registro de Propiedad Intelectual, Inscripción

Más detalles

Plan de clase (1/3) Profr(a).

Plan de clase (1/3) Profr(a). Plan de clase (1/3) Que los alumnos identifiquen conjuntos de cantidades que son directamente proporcionales y utilicen de manera flexible procedimientos tales como: el cálculo del valor unitario, cálculo

Más detalles

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico I.- En todos los problemas siguientes de esta sección, encuentra qué número (o números) debe seguir según la sucesión, y explica el por qué. 1) 1, 4, 27, 256,? (5 puntos) R = 3125 Observa que 1=1 1, 4=2

Más detalles

INTRODUCCIÓN. Primero Segundo. De donde viene lo que tengo Tengo que escoger. Tercero Cuarto Quinto Sexto

INTRODUCCIÓN. Primero Segundo. De donde viene lo que tengo Tengo que escoger. Tercero Cuarto Quinto Sexto INTRODUCCIÓN La educación Financiera es una herramienta para adquirir hábitos económicos sanos y tomar mejores decisiones sobre nuestro dinero y patrimonio, lo que genera la posibilidad de un mayor bienestar

Más detalles

Capítulo 4 Procesos con estructuras de repetición

Capítulo 4 Procesos con estructuras de repetición Estructura de contador Capítulo 4 Procesos con estructuras de repetición Esta es una operación que incrementa en una unidad el valor almacenado en la variable c, cada vez que el flujo del diagrama pasa

Más detalles

Módulo Nº 3: Números decimales. MATEMÁTICA Guía didáctica. 5 o

Módulo Nº 3: Números decimales. MATEMÁTICA Guía didáctica. 5 o Módulo Nº 3: Números decimales MATEMÁTICA Guía didáctica 5 o Módulo Nº 3: Números decimales MATEMÁTICA Guía didáctica NIVEL DE EDUCACIÓN BÁSICA División de Educación General Ministerio de Educación República

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

TRABAJANDO CON LOS NÚMEROS DEL 0 AL 50

TRABAJANDO CON LOS NÚMEROS DEL 0 AL 50 TRABAJANDO CON LOS NÚMEROS DEL 0 AL 50 Objetivos 1 Generales de Primaria G 2 9: GPC 3 9.1, GPC9.2 G10: GPC10.1, GPC10.2 G11: GPC11.1, GPC11.2 G13: GPC13.1 (G2: GPC2.1, G3: GPC3.1, G4: GPC4.1, G12: GPC12.1,

Más detalles

Matemática Discreta. Clase 2. Reglas de la suma y del producto Permutaciones

Matemática Discreta. Clase 2. Reglas de la suma y del producto Permutaciones Matemática Discreta Clase 2 Reglas de la suma y del producto Permutaciones 1 Combinatoria Enumerativa o El Arte de Saber Contar. o, mejor dicho, El Arte de Contar sin Contar. (Nos interesa saber cuántas

Más detalles

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones CAPÍTULO 4 37 CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN Para diseñar el SGE, lo primero que se necesita es plantear diferentes formas en las que se pueda resolver el problema para finalmente decidir

Más detalles

Cuantos números de tres cifras distintas se pueden formar con las nueve cifras significativas del sistema decimal?

Cuantos números de tres cifras distintas se pueden formar con las nueve cifras significativas del sistema decimal? COMBINATORIA La "Teoría Combinatoria" resuelve problemas que aparecen al estudiar y cuantificar las diferentes agrupaciones (ordenaciones, colecciones,...) que podemos formar con los elementos de un conjunto.

Más detalles

Juegos de escritura/pensamiento

Juegos de escritura/pensamiento N Nombre Tipo de juego Lugar // cantidad de personas 52 No es...? Tranquilo Interior - hasta 25 53 Animales de tierra... Tranquilo Interior - hasta 30 54 Parecido - diferente Tranquilo Interior - hasta

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Haciendo números con cartas / El codicioso Tungi

Haciendo números con cartas / El codicioso Tungi Haciendo números con cartas / El codicioso Tungi Núcleo: RELACIONES LÓGICO MATEMÁTICAS Nivel: SEGUNDO CICLO Duración: 5 MINUTOS DESCRIPCIÓN: Serie coreana de animación que aborda diferentes aprendizajes

Más detalles

Fundamentos de negocio Recursos Humanos > Problemas con tu personal?: Aprende a resolverlos (Manejo de conflictos) > Gana negociando

Fundamentos de negocio Recursos Humanos > Problemas con tu personal?: Aprende a resolverlos (Manejo de conflictos) > Gana negociando Qué es la negociación? Definición: la negociación es el proceso por el cual dos o más personas interactúan para llegar a un acuerdo o convenio sobre un punto en el que difieren. Es decir, negociar es seguir

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles
Sitemap