Skitty MFC | Spencer nicks black fishnet | Linnea_ mfc

Tema 5. Variables aleatorias discretas


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5. Variables aleatorias discretas"

Transcripción

1 Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso elemental de un experimento aleatorio. Cualquier variable estadística cuantitativa estudiada en los temas 1 a 3 podría considerarse variable aleatoria con la condición de que esté observada en todos los individuos de una población. La media de una variable aleatoria X se denota por µ x. En el caso en el que no exista la posibilidad de confusión respecto de la variable aleatoria con la que estamos trabajando, la media se denotará solamente por µ. A la media de una variable aleatoria X también se le llama esperanza matemática de X, denotándola entonces por E(X). La varianza de una variable aleatoria X se denota por Var(X), por σ 2 x o simplemente por σ 2. Por tanto, la desviación típica de una variable aleatoria X se denota por σ x o por σ. La función de distribución de una variable aleatoria X se denota por F X o simplemente por F y se define de la siguiente forma: F X (t) = P (X t) para todo t. CLASIFICACIÓN DE LAS VARIABLES ALEATORIAS: Variable aleatoria discreta: sólo puede tomar valores numéricos aislados (fijados dos consecutivos, no puede existir ninguno intermedio). Variable aleatoria continua: puede tomar cualquier valor numérico dentro de un intervalo, de modo que entre cualesquiera dos de ellos siempre existe otro posible valor Variables aleatorias discretas Identificación de una variable aleatoria discreta X: es preciso conocer el conjunto de los posibles resultados de X: {x 1, x 2,..., x k,...} y el conjunto de las probabilidades siguientes: p 1 = P (X = x 1 ) p 2 = P (X = x 2 ). p k = P (X = x k ).

2 Dra. Josefa Marín Fernández. Grado en Información y Documentación. Estadística. Tema 5 2 Función de probabilidad de una variable aleatoria discreta X: p i = P (X = x i ) para i = 1, 2,..., k,... Propiedades importantes de la función de probabilidad: p i 0 para todo i. p i = 1. La representación gráfica de la función de probabilidad de una variable aleatoria discreta es análoga al diagrama de barras de frecuencias relativas de una variable estadística discreta. Función de distribución de una variable aleatoria discreta X: F X (t) = P (X t) para todo t. La representación gráfica de la función de distribución de una variable aleatoria discreta es análoga al gráfico de frecuencias relativas acumuladas de una variable estadística discreta. Media de una variable aleatoria discreta X: µ = E(X) = x i p i. Varianza de una variable aleatoria discreta X: σ 2 = Var(X) = (x i µ) 2 p i = Desviación típica de una variable aleatoria discreta X: σ = Var(X). ( x 2 i p i ) µ Distribuciones discretas importantes De las distribuciones discretas importantes solamente vamos a estudiar la distribución Binomial. Una variable aleatoria X tiene una distribución Binomial de parámetros n y p si cuenta el número de veces que ocurre un suceso denominado éxito cuando se repite n veces un experimento cuyos únicos resultados son el suceso éxito o su contrario, permaneciendo constante la probabilidad (p) del suceso éxito. El suceso contrario de éxito se suele llamar fracaso y su probabilidad es q = 1 p. Son equivalentes las dos afirmaciones siguientes: X tiene una distribución Binomial de parámetros n y p y X es una variable aleatoria Binomial de parámetros n y p. La variable aleatoria Binomial de parámetros n y p será denotada por: B(n, p). La afirmación X tiene una distribución Binomial de parámetros n y p será denotada por: X B(n, p). Los posibles resultados de B(n, p) son: {0, 1, 2,..., n}. Si X B(n, p), su función de probabilidad es: P (X = k) = n! k! (n k)! pk q n k, para k = 0, 1, 2,..., n.

3 Dra. Josefa Marín Fernández. Grado en Información y Documentación. Estadística. Tema 5 3 Los resultados de la función de probabilidad de B(n, p) se pueden determinar con cualquier paquete estadístico, como MINITAB o SPSS (para cualquier valor de n y p) y con las tablas de la función de probabilidad (para algunos valores de n y p). Si X B(n, p), su función de distribución se define como se definía para cualquier variable aletoria; es decir: F X (t) = P (X t) para todo t. Los resultados de la función de distribución de B(n, p) se pueden determinar con cualquier paquete estadístico, como MINITAB o SPSS (para cualquier valor de n y p) y con las tablas de la función de distribución (para algunos valores de n y p). A la función de distribución se le llama también función acumulativa o función de probabilidades acumuladas debido a que, para un número natural t, se verifica: P (X t) = P [(X = 0) (X = 1) (X = t)] = P (X = 0) + P (X = 1) + + P (X = t), es decir, si t es un número natural entonces para obtener P (X t) se van sumando (acumulando) las probabilidades de los sucesos (X = 0), (X = 1),... y (X = t). A partir de los resultados de la función de distribución podemos determinar los valores de la función de probabilidad ya que: P (X = 0) = P (X 0) = F X (0), P (X = k) = P [(X k) (X k 1)] = P (X k) P (X k 1) = F X (k) F X (k 1), para k = 1, 2,..., n. Si X B(n, p), su media es: su varianza es: y su desviación típica es: µ = np, σ 2 = npq, σ = npq.

4 Dra. Josefa Marín Fernández. Grado en Información y Documentación. Estadística. Tema 5 4 Ejemplos que se van a resolver en clase Ejemplo 5.1. Se sabe que el 4 % de los libros que se prestan en una biblioteca escolar se devuelven con retraso. Se realiza el experimento que consiste en observar si la devolución de un libro se ha hecho con retraso o no. a) Determinar la función de probabilidad y hacer su representación gráfica. b) Calcular la función de distribución y hacer su representación gráfica. c) Hallar la media y la varianza. Ejemplo 5.2. Sea X una variable aleatoria discreta cuya función de probabilidad viene dada por: Calcular: x i p i = P (X = x i ) a) La expresión de la función de distribución F (t) para todo valor de t. b) La esperanza matemática de X. c) La varianza y la desviación típica de X. Ejemplo 5.3. Sea X B(10, 0 4). Calcular: a) P (X 5) b) P (X > 5) c) P (X < 5) d) P (X 5) e) P (X = 5) f) P (2 X 8) g) P (2 X < 8) h) P (2 < X 8) i) P (2 < X < 8) Ejemplo 5.4. Sea X B(10, 0 6). Calcular P (X 5). Ejemplo 5.5. Supongamos que el 30 % de la población de todos los usuarios de un centro de documentación tiene un título de licenciado. Supongamos, también, que la población es suficientemente grande como para que al elegir un usuario al azar y apartarlo, no se altere dicho porcentaje. Realizamos el experimento que consiste en elegir al azar tres usuarios de dicho centro de documentación y observar la variable aleatoria X=número de usuarios del centro de documentación que tiene un título de licenciado, entre los tres elegidos al azar. a) Hallar la función de probabilidad de X y hacer su representación gráfica. b) Determinar la función de distribución de X y hacer su representación gráfica. c) Calcular la media y la desviación típica de X.

5 Dra. Josefa Marín Fernández. Grado en Información y Documentación. Estadística. Tema 5 5 Ejemplo 5.6. Supongamos, igual que en el ejemplo anterior, que el 30 % de la población de todos los usuarios de un centro de documentación tiene un título de licenciado. Supongamos, también, que la población es suficientemente grande como para que al elegir un usuario al azar y apartarlo, no se altere dicho porcentaje. Se eligen al azar 20 usuarios de dicho centro de documentación. Calcular: a) La probabilidad de que ninguno de ellos tenga un título de licenciado. b) La probabilidad de que menos de 5 tengan un título de licenciado. c) La probabilidad de que 10 de ellos o más tengan un título de licenciado.

6 Dra. Josefa Marín Fernández. Grado en Información y Documentación. Estadística. Tema 5 6 Problemas propuestos Problema 5.1. De los usuarios de un centro de documentación, el 23 % pertenece al grupo I de edad (menos de 20 años). Supongamos, también, que la población es suficientemente grande como para que al elegir un usuario al azar y apartarlo, no se altere dicho porcentaje. Realizamos el experimento que consiste en elegir al azar tres usuarios del centro de documentación y observar la variable aleatoria X=número de usuarios que pertenecen al grupo I de edad, entre los tres elegidos al azar. a) Hallar el conjunto de los posibles resultados de la variable aleatoria X, así como su función de probabilidad. b) Hallar la probabilidad de que el número de usuarios que pertenecen al grupo I sea menor que dos. c) Determinar la función de distribución de X y hacer su representación gráfica. d) Calcular la media y la desviación típica de X. Problema 5.2. De un total de 500 libros, 50 son científicos. Extraemos al azar un primer libro entre los 500 y lo reponemos en la población de libros antes de realizar una nueva extracción; volvemos a extraer al azar un segundo libro entre los 500 y lo reponemos antes de hacer una nueva extracción;...; finalmente, extraemos un quinto libro entre los 500. Consideramos la variable aleatoria X=número de libros científicos, entre los 5 elegidos al azar con reposición. a) Hallar la función de probabilidad de X y hacer su representación gráfica. b) Determinar la función de distribución de X y hacer su representación gráfica. c) A partir de la función de distribución de X, calcular la probabilidad de que el número de libros científicos sea mayor que 3. d) Calcular la media y la desviación típica de X. Problema 5.3. Los libros que salen de una imprenta se clasifican en defectuosos (si tienen defectos de impresión) y no defectuosos (si no tienen defectos de impresión). Se supone que la cantidad de libros que salen de dicha imprenta es tan grande, que puede considerarse infinita. Por tanto, si elegimos y apartamos un libro, esto no altera el porcentaje de libros no defectuosos, que es 95 %. a) Si se eligen al azar 20 libros, cuál es la probabilidad de que 18 de ellos sean no defectuosos? b) Si se eligen al azar 25 libros, cuál es la probabilidad de que el número de libros no defectuosos sea mayor o igual que 21? Problema 5.4. Se sabe que el 4 % de los libros que se prestan en una biblioteca escolar se devuelven con retraso. Se realiza el experimento que consiste en observar si la devolución de cada libro se ha hecho con retraso o no. Se eligen al azar 12 libros prestados. a) Cuál es la probabilidad de que se devuelvan con retraso 2 libros? b) Cuál es la probabilidad de que se devuelvan con retraso más de 2 libros? Problema 5.5. Supongamos que el 1 % de la población de todos los usuarios de un centro de documentación tiene menos de 10 años. Supongamos, también, que la población es suficientemente grande como para que al elegir un usuario al azar y apartarlo, no se altere dicho porcentaje. Se eligen al azar 15 usuarios de dicho centro de documentación. Calcular:

7 Dra. Josefa Marín Fernández. Grado en Información y Documentación. Estadística. Tema 5 7 a) La probabilidad de que ninguno de ellos tenga menos de 10 años. b) La probabilidad de que tengan menos de 10 años 3 usuarios o menos. c) La probabilidad de que tengan menos de 10 años menos de 3 usuarios. d) La probabilidad de que tengan menos de 10 años más de 2 usuarios. e) La probabilidad de que tengan menos de 10 años 2 usuarios o más. f) La probabilidad de que el número de usuarios con menos de 10 años esté comprendida entre 2 (incluido) y 10 (incluido). g) El número medio de usuarios con menos de 10 años.

8 Dra. Josefa Marín Fernández. Grado en Información y Documentación. Estadística. Tema 5 8 Soluciones de los problemas propuestos Solución del problema 5.1. X B(n = 3, p = 0 23) a) La función de probabilidad de X es: P (X = k) = siendo n = 3, p = 0 23 y q = 1 p = n! k!(n k)! pk q n k para k = 0, 1, 2, 3 Explícitamente, la función de probabilidad viene dada en la siguiente tabla: b) P (X < 2) = x i p i = P (X = x i ) c) La función de distribución, para todo valor de t, es la siguiente: F X (t) = 0 si t < si 0 t < si 1 t < si 2 t < 3 1 si t 3 Su representación gráfica es similar al gráfico de frecuencias acumuladas relativas de una variable estadística cuantitativa discreta (con datos no agrupados en intervalos). d) Media= µ = n p = = 0 69 usuarios, Varianza= σ 2 = n p q = = usuarios 2, Desviación típica= σ = usuarios. Solución del problema 5.2. X B(n = 5, p = 0 1) a) La función de probabilidad de X es: P (X = k) = n! k!(n k)! pk q n k para k = 0, 1, 2, 3, 4, 5 siendo n = 5, p = 0 1 y q = 1 p = 0 9. Explícitamente, la función de probabilidad viene dada en la siguiente tabla: x i p i = P (X = x i ) Su representación gráfica es similar al diagrama de barras de frecuencias relativas de una variable estadística cuantitativa discreta (con datos no agrupados en intervalos).

9 Dra. Josefa Marín Fernández. Grado en Información y Documentación. Estadística. Tema 5 9 b) La función de distribución, para todo valor de t, es la siguiente: F X (t) = 0 si t < si 0 t < si 1 t < si 2 t < si 3 t < si 4 t < 5 1 si t 5 Su representación gráfica es similar al gráfico de frecuencias acumuladas relativas de una variable estadística cuantitativa discreta (con datos no agrupados en intervalos). c) P (X > 3) = 1 F X (3) = d) Media= µ = n p = = 0 5 libros científicos, Varianza= σ 2 = n p q = = 0 45 (libros científicos) 2, Desviación típica= σ = libros científicos. Solución del problema 5.3. a) Sea X=número de libros no defectuosos, entre los 20 elegidos al azar. Entonces X B(n = 20, p = 0 95). Por tanto, P (X = 18) = F X (18) F X (17) = b) Sea X=número de libros no defectuosos, entre los 25 elegidos al azar. Entonces X B(n = 25, p = 0 95). Por tanto, P (X 21) = 1 F X (20) = Solución del problema 5.4. Sea X=número de libros que se devuelven con retraso, entre los 12 libros prestados elegidos al azar. Entonces X B(n = 12, p = 0 04). a) P (X = 2) = F X (2) F X (1) = b) P (X > 2) = 1 F X (2) = Solución del problema 5.5. Sea X=número de usuarios con menos de 10 años, entre los 15 elegidos al azar. Entonces X B(n = 15, p = 0 01). a) P (X = 0) = F X (0) = b) P (X 3) = F X (3) = c) P (X < 3) = F X (2) = d) P (X > 2) = 1 F X (2) = e) P (X 2) = 1 F X (1) = f) P (2 X 10) = F X (10) F X (1) = g) E(X) = np = 0 15 usuarios con menos de 10 años.

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2 Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal Índice 1. Variables aleatorias 2 2. Distribución de probabilidad para variables aleatorias discretas

Más detalles

Práctica 3 Distribuciones de probabilidad

Práctica 3 Distribuciones de probabilidad Práctica 3 Distribuciones de probabilidad Contenido 1 Objetivos 1 2 Distribuciones de variables aleatorias 1 3 Gráficas de funciones de distribución, densidad y probabilidad 6 4 Bibliografía 10 1 Objetivos

Más detalles

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS 4.1 Distribución binomial 4.1.1 Definición. Ejemplos 4.1.2 La media y la varianza 4.1.3 Uso de tablas 4.1.4 Aditividad 4.2 Distribución de Poisson 4.2.1 Definición.

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas Hemos definido que una variable aleatoria X es discreta si I X es un conjunto finito o infinito numerable. En la práctica las variables aleatorias discretas sirven como modelos

Más detalles

TALLER DE ESTADÍSTICA 8. PROBABILIDAD E INFERENCIA CON PROGRAMAS INFORMÁTICOS MAURICIO CONTRERAS

TALLER DE ESTADÍSTICA 8. PROBABILIDAD E INFERENCIA CON PROGRAMAS INFORMÁTICOS MAURICIO CONTRERAS TALLER DE ESTADÍSTICA 8. PROBABILIDAD E INFERENCIA CON PROGRAMAS INFORMÁTICOS MAURICIO CONTRERAS PROBABILÍDADES CON DERIVE Y EXCEL 1. Introducción Podemos utilizar algunos programas de ordenador para calcular

Más detalles

IES Real Instituto de Jovellanos de Gijón Serie 8. Distribuciones de Probabilidad MATEMÁTICAS 1º B.I. N.M. - Serie 8: Distribuciones de Probabilidad

IES Real Instituto de Jovellanos de Gijón Serie 8. Distribuciones de Probabilidad MATEMÁTICAS 1º B.I. N.M. - Serie 8: Distribuciones de Probabilidad MATEMÁTICAS 1º B.I. N.M. - Serie 8: Distribuciones de Probabilidad 1 Una variable aleatoria X toma los valores 0, 3, 5, 6 y 10, con probabilidades 0 16; 0 25; 0 21; 0 12 y 0 26 respectivamente. a) Comprueba

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

TEMA 5. MUESTREO PARA LA ACEPTACIÓN.

TEMA 5. MUESTREO PARA LA ACEPTACIÓN. TEMA 5. MUESTREO PARA LA ACEPTACIÓN. Introducción. Planes de muestreo por atributos simple, doble, múltiple y rectificativos Dodge-Romig, Norma militar 1000STD-105D. Pautas a seguir para el cambio de rigor

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( )

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) La distribución Normal tiene numerosas aplicaciones en el campo de la Probabilidad y la Estadística,

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación de Septiempbre, 00 Cuestiones 1h C1. El tiempo que un ordenador tarda en ejecutar una tarea es una v.a. Y Expλ). Para hacer un estudio

Más detalles

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS ESTADÍSTICA I Relación de Ejercicios nº 4 PROBABILIDAD Curso 007-008 1) Describir el espacio muestral

Más detalles

DIAGRAMAS DE CONTROL TEORÍA GENERAL

DIAGRAMAS DE CONTROL TEORÍA GENERAL 1. DESARROLLO HISTÓRICO DIAGRAMAS DE CONTROL TEORÍA GENERAL 20 s Shewhart Primeros avances en el control estadístico de calidad. Segunda Guerra Mundial Se emplearon con mayor fuerza No se utilizaron Deming

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Práctica 5. Contrastes paramétricos en una población

Práctica 5. Contrastes paramétricos en una población Práctica 5. Contrastes paramétricos en una población 1. Contrastes sobre la media El contraste de hipótesis sobre una media sirve para tomar decisiones acerca del verdadero valor poblacional de la media

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS Grupos P y P (Prof. Ledesma) Problemas. Variables aleatorias..- Sea la v.a. X que toma los valores - y con probabilidades, y, respectivamente y

Más detalles

MATEMÁTICAS CON LA HOJA DE CÁLCULO

MATEMÁTICAS CON LA HOJA DE CÁLCULO MATEMÁTICAS CON LA HOJA DE CÁLCULO Podemos dar a esta aplicación un uso práctico en el aula de Matemáticas en varios sentidos: Como potente calculadora: sucesiones, límites, tablas estadísticas, parámetros

Más detalles

TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN BINOMIAL Y NORMAL

TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN BINOMIAL Y NORMAL TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN. BINOMIAL Y NORMAL I.- Variable aleatoria. Concepto. Antes de definir el concepto de varibale aleatoria, veamos algunos ejemplos (ya estás empezando a comprobar

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

I.E. CÁRDENAS CENTRO MÓDULO DE ESTADÍSTICA CICLO VI GRADO UNDÉCIMO

I.E. CÁRDENAS CENTRO MÓDULO DE ESTADÍSTICA CICLO VI GRADO UNDÉCIMO 1 I.E. CÁRDENAS CENTRO MÓDULO DE ESTADÍSTICA CICLO VI GRADO UNDÉCIMO 2 TABLA DE CONTENIDO pág. UNIDAD 1 1. VARIABLE ALEATORIA, ESPACIO MUESTRAL, TÉCNICAS DE CONTEO 6 1.1. VARIABLE ALEATORIA 6 1.1.1. Clasificación

Más detalles

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística ( ) x n P(X x) = p i (1 p) n i i σ 2 X i=0 µ X = np = np(1 p) Variables Aleatorias Discretas y algunas Distribuciones de Probabilidad Raúl D. Katz Pablo A. Sabatinelli 2013 Índice

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

Examen de Estadística Ingeniería de Telecomunicación

Examen de Estadística Ingeniería de Telecomunicación Examen de Estadística Ingeniería de Telecomunicación 8 de Mayo de 3 Cuestiones solucion h C. (.5p) El equipo directivo de cierta empresa del sector de hostelería está constituido por 5 personas de las

Más detalles

Tema 6 Algunos modelos de distribuciones discretas.

Tema 6 Algunos modelos de distribuciones discretas. Tema 6 Algunos modelos de distribuciones discretas. Una vez epuesta la teoría general sobre variables aleatorias y sus distribuciones de probabilidad, vamos a describir algunas distribuciones particulares

Más detalles

Estadística aplicada y modelización. 15 de junio de 2005

Estadística aplicada y modelización. 15 de junio de 2005 Estadística aplicada y modelización. 15 de junio de 2005 SOLUCIÓN MODELO A 1. En una población de fumadores se quiere examinar la relación entre el número de cigarrillos que consumen diariamente y el número

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA

NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA A NTONIO F ERNÁNDEZ M ORALES MÁLAGA, 2006 Nociones Básicas de Estadística Actuarial Vida Antonio Fernández Morales Málaga, 2006 Nociones Básicas de Estadística

Más detalles

Notas de Probabilidades y Estadística

Notas de Probabilidades y Estadística Notas de Probabilidades y Estadística Capítulos 1 al 12 Víctor J. Yohai vyohai@dm.uba.ar Basadas en apuntes de clase tomados por Alberto Déboli, durante el año 2003 Versión corregida durante 2004 y 2005,

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Métodos no paramétricos para la comparación de dos muestras

Métodos no paramétricos para la comparación de dos muestras Investigación Métodos no paramétricos para la comparación de dos muestras Métodos no paramétricos para la comparación de dos muestras Pértega Díaz, S. Unidad de Epidemiología Clínica y Bioestadística.

Más detalles

Tema 7: Juegos con información incompleta

Tema 7: Juegos con información incompleta Tema 7: Juegos con información incompleta Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Modelo de Spence Introducción y ejemplos Equilibrio Bayesiano de Nash Aplicaciones Señales

Más detalles

Test ( o Prueba ) de Hipótesis

Test ( o Prueba ) de Hipótesis Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a

Más detalles

CAPÍTULO 5. 5.3 La Distribución Normal

CAPÍTULO 5. 5.3 La Distribución Normal CAPÍTULO 5 5.3 La Distribución Normal Si una variable aleatoria X tiene una distribución Normal y queremos calcular la probabilidad de que X caiga entre dos valores a y b entonces, debemos hallar el área

Más detalles

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica.

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica. Las variables de un estudio. La variable es determinada característica o propiedad del objeto de estudio, a la cual se observa y/o cuantifica en la investigación y que puede variar de un elemento a otro

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10 Asignatura: Ingeniería Industrial Índice de Contenidos 1 Introducción... 2 2 Distribución exponencial... 2 3 Distribución Weibull... 6 4 Distribuciones Gamma y k-erlang... 10 5 Distribución log-normal...

Más detalles

PRACTICA 2: Distribuciones de probabilidad discretas

PRACTICA 2: Distribuciones de probabilidad discretas Fn(x) 0.0 0.2 0.4 0.6 0.8 1.0 1 0 1 2 3 4 5 x PRACTICA 2: Distribuciones de probabilidad discretas 1. Clasi que las siguientes variables como discretas o continuas: (a) Número de crías (b) Peso del contenido

Más detalles

Distribuciones de Probabilidad en Arena

Distribuciones de Probabilidad en Arena Distribuciones de Probabilidad en Arena Arena posee una amplia gama de funciones o distribuciones estadísticas incorporadas para la generación de números aleatorios. Estas distribuciones aparecen cuando,

Más detalles

Algunas distribuciones importantes de probabilidad

Algunas distribuciones importantes de probabilidad Capítulo 5 Algunas distribuciones importantes de probabilidad En los temas anteriores se presentaban ejemplos de distintos experimentos aleatorios y de variables aleatorias que expresan sus resultados.

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

[Guía del Participante]

[Guía del Participante] HERRAMIENTAS DE LA CALIDAD TOTAL [Guía del Participante] Unidad 1 Técnico Nivel Operativo Guía del Participante PRIMERA EDICIÓN Mayo 2014 Todos los derechos reservados. Esta publicación no puede ser reproducida

Más detalles

Práctica 2 de Excel (Curso 2009-2010)

Práctica 2 de Excel (Curso 2009-2010) Práctica 2 de Excel (Curso 2009-2010) Diagramas y Gráficos en Excel. Excel puede crear gráficos a partir de datos previamente seleccionados en una hoja de cálculo. El usuario puede incrustrar un gráfico

Más detalles

SEPTIEMBRE 2005. Opción A

SEPTIEMBRE 2005. Opción A Selectividad Septiembre 005 SEPTIEMBRE 005 Opción A 4 5.- Calcula dos matrices cuadradas A y B sabiendo que A + 3B = y que A B =..- Se considera la parábola p (x) = 0,5 x +,5 x y sea s (x) la línea poligonal

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X =

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X = Selectividad Junio 011 Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUMNO/A DEBERÁ ESCOGER UNO DE

Más detalles

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D.

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D. UNIVERSIDAD DE PUERTO RICO FACULTAD DE ADMINISTRACION DE EMPRESAS INSTITUTO DE ESTADISTICA ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus, Ph.D. Presentación Este curso ofrece al estudiante, la posibilidad

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

PRINCIPALES DISTRIBUCIONES DISCRETAS

PRINCIPALES DISTRIBUCIONES DISCRETAS PRINCIPALES DISTRIBUCIONES DISCRETAS Objetivos generales del tema En este tema definiremos y discutiremos diversas e imortantes distribuciones discretas, es decir, funciones masa de robabilidad o funciones

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Imagen de Rosaura Ochoa con licencia Creative Commons

Imagen de Rosaura Ochoa con licencia Creative Commons Imagen de Rosaura Ochoa con licencia Creative Commons Durante el primer tema hemos aprendido a elaborar una encuesta. Una vez elaborada la encuesta necesitamos escoger a los individuos a los que se la

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1)

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) Cuestiones de Verdadero/Falso 1. Un estadístico es una característica de una población. 2. Un parámetro es una característica de una población. 3. Las variables discretas

Más detalles

Teoría de Colas o Fenómenos de Espera

Teoría de Colas o Fenómenos de Espera Teoría de Colas o Fenómenos de Espera Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Introducción 2 Introducción............................................................

Más detalles

Distribuciones unidimensionales discretas

Distribuciones unidimensionales discretas Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución de Bernouilli de parámetro p 2 3 4 5 6 7 Distribución de Bernouilli de parámetro p Experimento de Bernouilli Es un experimento

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Manual de SPC (Statistical Process Control) Índice: SPC, Qué es? Herramientas estadísticas STATISTICAL PROCESS CONTROL. 1. Que es SPC?

Manual de SPC (Statistical Process Control) Índice: SPC, Qué es? Herramientas estadísticas STATISTICAL PROCESS CONTROL. 1. Que es SPC? Manual de SPC (Statistical Process Control) Índice: SPC, Qué es? Herramientas estadísticas STATISTICAL PROCESS CONTROL 1. Que es SPC? SPC (Statistical Process Control) por sus cifras en ingles, es la aplicación

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

Relación de problemas: Distribuciones de probabilidad

Relación de problemas: Distribuciones de probabilidad Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Distribuciones de probabilidad 1. Un jugador de dardos da justo en la diana 2 de cada cinco veces que lanza. Si

Más detalles

Asignatura: Econometría. Conceptos MUY Básicos de Estadística

Asignatura: Econometría. Conceptos MUY Básicos de Estadística Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes

Más detalles

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

4. HERRAMIENTAS ESTADÍSTICAS

4. HERRAMIENTAS ESTADÍSTICAS 4. HERRAMIENTAS ESTADÍSTICAS 4.1 Definiciones La mayor parte de las decisiones se toman en función de la calidad, como en la mayoría de las demás áreas del moderno esfuerzo humano (por ejemplo, en la evaluación

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Índice 1. LA MATERIA. EL LIBRO DE TEXTO 3. ORIENTACIONES METODOLÓGICAS 4. EVALUACIÓN 5. ORIENTACIONES Y ACTIVIDADES UNIDADES DIDÁCTICAS 1. Sistemas de ecuaciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA Capítulo 4 INFERENCIA ESTADÍSTICA 4.1. Introducción Inferir: Sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. La estadística, ciencia o rama de las Matemáticas que se

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

aplicado al Experiencia La gestión de un servicio y, por ende, la

aplicado al Experiencia La gestión de un servicio y, por ende, la EN PORTADA 6 Sigma aplicado al Experiencia En este artículo vamos a dar una visión más particular sobre la aplicabilidad de 6 Sigma al sector Servicios. Existe abundante literatura al respecto, pero sobre

Más detalles

Tema 3. Concepto de Probabilidad

Tema 3. Concepto de Probabilidad Tema 3. Concepto de Probabilidad Presentación y Objetivos. El Cálculo de Probabilidades estudia el concepto de probabilidad como medida de incertidumbre. En situaciones donde se pueden obtener varios resultados

Más detalles

CAPÍTULO 5 DISTRIBUCIONES DE PROBABILIDADES

CAPÍTULO 5 DISTRIBUCIONES DE PROBABILIDADES CAPÍTULO 5 DISTRIBUCIONES DE PROBABILIDADES En este capítulo se introducirá el concepto de variable aleatoria, cuya importancia radica en introducir modelos matemáticos en el cálculo de probabilidades.

Más detalles

Una introducción amable a la teoría de colas

Una introducción amable a la teoría de colas Pablo Serrano Yáñez-Mingot, José Alberto Hernández Gutiérrez Una introducción amable a la teoría de colas Departamento de Ingeniería Telemática - Universidad Carlos III de Madrid Control de versiones 205-09-22

Más detalles

DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B. Bloque 1. Contenidos comunes.

DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B. Bloque 1. Contenidos comunes. DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B Contenidos mínimos según real decreto 1631/2006 Bloque 1. Contenidos comunes. o Planificación y utilización de procesos de razonamiento y estrategias

Más detalles
Sitemap